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A new approach is proposed for the determination of the dominant eigenvalues and their 
corresponding eigenvectors for one-spin transfer matrices. The matrices describe properties of 
spin systems on semi-infinite lattices. The method gives approximate solution for lattices of 
widths larger than previously tractable. 0 1989 Academic Press, Inc. 

The classic transfer matrix formalism has been most useful in yielding numerical 
results for lattice models that are not exactly soluble [l-4]. The standard proce- 
dure is to apply phenomenological renormalization to solutions of lattices which 
are infinite in one direction but finite in the other directions, e.g., in two dimen- 
sions, a strip of width n. From the determination of the leading eigenvalues 
(A, > I, > . . . ) of the transfer matrix, one derives the free energy per lattice site F, 
and the correlation lenghth <,, where 

F,, = -In(&) 

4;’ = ln(n,/&). 

Then the application of finite size scaling yields the critical exponents and phase 
structure of the truly infinite system (n --t CC limit). More particulary, we have 
shown [S-6] how the critical properties of spin lattice systems may be calculated 
in terms of the duo-diagonal, sparse matrices of the type introduced by Garners 
and Wannier [7-8-J. The formulation is quite general [9], including two-, three-, 
and higher dimensional lattices as well as allowing nearest, next-nearest, and more 
distant neighbor interactions. 

The difficulty in implementing the method is not its formulation but rather lies 
in the practical problems of large-scale computation. In the present work, we 
describe these problems and propose a new approach to their resolution. Although 
further work is needed, the basic principles appear to be sound. 

The matrices we are interested in are extremely sparse: they have exactly two 
nonzero elements in every row and column. Their size is 2” x 2”, where n is as large 
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as allowed by practical restrictions of computation such as storage space in memory 
and CPU time (closely related to money). The nonzero matrix elements are dis- 
tributed in a pattern, characteristic of the nature of the interaction: (a) nearest 
neighbor, next-nearest neighbor, etc.; (b) dimensionality of the lattice. For example, 
the 2-dimensional Ising system gives rise to a transfer matrix of the form (n = 3) 

M= 

a, 0 0 0 aI 0 0 0 
a3 0 0 0 a4 0 0 0 
0 aI 0 0 0 a* 0 0 
0 a3 0 0 0 a4 0 0 
0 0 a3 0 0 0 a4 0 
0 0 a, 0 0 0 a6 0 
0 0 0 a3 0 0 0 a4 
0 0 0 a, 0 0 0 a, 

(3) 

The precise pattern is not essential for starting the mathematical problem, which is 
to find the largest eigenvalue(s) and the associated eigenvector(s) of the transfer 
matrix. The maximal eigenvalue 1, is simply the partition function per unit spin, 
and the knowledge of 1,) allows one to determine the energy per spin, specific 
heat, etc. Knowledge of the associated eigenvector may be used to determine the 
magnetization, susceptibility, etc. The second largest eigenvalue then fixes the 
correlation length. All this is well known; we are concerned here with demon- 
strating the usefulness of a method for handling the very large matrices that arise 
in such problems. 

The (sparse) transfer matrices have simple properties that are independent of the 
particular spin lattice model they describe. These are 

(1) Duo-diagonal (described above). 
(2) A few numbers appear in a repetitive pattern. For example, for the 

2-dimensional nearest neighbor interaction model with a magnetic field H, six (not 
all independent) numbers suffice for fixed H and temperature T. 

(3) The maximal eigenvalue is real, positive, and isolated; the other eigen- 
values are complex, in general, since the matrix is not symmetric (although it is 
real). 

It is conventional to use the classic “power” method of iteratively determining the 
maximal eigenvalue and its eigenvector. Because of the points (1) and (2) above, 
there is no need to store the matrix as a whole, and in fact there is no need to use 
ordinary matrix multiplication. A simple algorithm is sufficient for obtaining the 
(n + 1)th iterate for the eigenvector from the nth. Because of point (3) above, the 
procedure converges to the desired result; the speed of convergence (the number of 
iterations) is determined by the nearness of the next largest eigenvalue since the 
error is of order (&/A,)p for p iterations. Since A2 + 1, as a phase boundary is 
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approached, the method is poorest there. Nevertheless, even there, l&l < A1 for a 
finite lattice, so the procedure converges, just slowly (and the larger the lattice, the 
slower). 

The limitation we encountered, however, was due to the length of the vectors 
being multiplied (and so that of the eigenvectors sought) rather than to the size of 
the matrix itself. The vector dimension of 2” for n Z 12 led to a rapidly growing 
number of arithmetic operations and was, furthermore, limited by the CYBER 
bound of 216 - 1 on vector dimension. This latter constraint may be avoided 
(awkwardly) but the former comes into play in any event. Now, it is true that the 
maximal eigenvectors are rather sparse, in general. That is to say, only a small 
number of elements are “large” so long as the temperature and magnetic field are 
chosen such that the system is in an ordered phase. In our calculations we never 
made use of this information. For physical reasons, we are only interested in the 
dominant eigenvalues and the largest elements (and their positions) in the corres- 
ponding eigenvectors. By using the standard power method, we were multiplying 
and adding-most of the time-very small, uninteresting elements of the vectors. 
How can this be avoided? 

The idea is to modify the power method as follows: 

(1) Choose an arbitrary, sparse initial vector. For example, choose n, 
elements of the vector u1 to have value 1, and the remaining elements zero. Clearly, 
only n, reals (the elements of ul) and n, integers (the indices corresponding to the 
nonzero elements of ui) need to be stored at this step. 

(2) Multiply u1 by the (sparse) matrix M: w2 = Mui. Because of the simple 
structure of M-namely, because it has only two nonzero elements in every column 
-this will generate only 2 x n, nonzero elements in the vector w2. That is, at this 
step, we are storing 2 x n, integers and 2 x n, reals. 

(3) Sort the elements of the vector w2 by magnetude, keeping track of the 
indices (that is, tag the elements). Employ an appropriate criterion to choose half 
of the elements to form the new iterate (uZ) for the approximate eigenvector; the 
vector u2 will have n, elements, with np indices. 

(4) Repeat steps (l), then (3) in an analogous fashion for the transpose of the 
matrix, MT, and its eigenvector u with maximal eigenvalue (also I,, of course). 

(5) Compute the Rayleigh quotient at the ith iteration 

(4) 

and test for convergence. If the convergence criterion is satisfied, stop; Ri is the 
computed value of A, and ui, vi are right and left eigenvectors of M. If the 
convergence criterion is not satisfied, return to step (2) and proceed analogously, 
using ui, ci as the new starting vectors. 

(6) Using the resulting eigenvectors, compute the energy, spin configuration 
probabilities, etc. as usual. 
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There are two ambiguous points above: (a) the convergence criterion, referred to 
in (5), and (b) the selection criterion, referred to in (3). We have used the con- 
vergence criterion of requiring that the partition function (the logarithm of the 
eigenvalue), computed in three successive iterations, not vary by more than 10-12. 
This is somewhat arbitrary; a much stronger constraint would be meaningless in 
view of the ever present round-off errors, while a weaker one might give spurious 
results that depended on choice of starting vectors (step (1) above). Clearly, there 
is some flexibility here. The choice of a selection criterion is not so straightforward 
and deserves some discussion. 

The most obvious selection criterion is to choose the elements of the vector 
w2 = Mu, of largest magnitude to form the next iterate, Z.Q. We have found that this 
gives reasonable results, but biases the physics in an undesirable way. That is, the 
spin configuration probabilities computed with this criterion guiding the algorithm 
are far from translation invariant. The problem arises essentially because of end 
effects of the finite lattice. 

We give a specific example to illustrate this point. Suppose we are computing the 
approximate eigenvectors u, u for an Ising lattice of width 12 and we are using only 
n, = 25 elements; suppose further that we choose H = 0 and T< T,, so we are deep 
in the ferromagnetic phase. Then the most probable spin configurations are all 
aligned (2 such) and one spin flipped (24 such). The elements of the exact eigenvec- 
tors u, u with indices corresponding to the one-flip configurations are almost all 
equal-but not all. The ones corresponding to the configurations with an end spin 
flipped are quite different from the ones corresponding to an interior spin flipped 
(perhaps an order of magnitude larger or smaller). So the “largest magnitude” selec- 
tion criterion does not pick up these elements in both approximate eigenvectors u 
and v. Thus, the spin configuration probabilities are found to be essentially equal 
for almost all the one-flip states but some configurations are simply missed, since 
the probabilities are simply the products of the corresponding elements of u and u 
(appropriately normalized). 

As a consequence, we have used a somewhat more sophisticated convergence 
criterion. What we do is as follows. First multiply the right eigenvector approxima- 
tion u1 by M to get w2, as described above. Then multiply the left eigenvector 
approximation vi by MT to get the analogue of w2, which we call x2. Use the 
simple (largest magnitude) criterion to extract the next iterate v2. The extraction of 
the next iterate u2 from w2 is done in two steps. First search for nonzero elements 
of w2 which have indices that match those in the new vector v2. If this fills all np 
available positions in u2, we are done with this step; otherwise, choose the elements 
in w2 of largest magnitude that have not already been chosen to complete the new 
vector u2. In this way, all spin configurations that are physically related will be 
represented-if n, is large enough to accomodate them, of cource. If n, is less than 
the maximum (2”), naturally this cannot always be true. However, the missing spin 
configurations are those with the smallest probabilities. 

To illustrate these points, we display in Table I the results of computation of the 
maximal eigenvector for the simple 2-dimensional Ising lattice with a strip width of 
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TABLE I 

The Maximal Eigenvector for the Isotropic Square 2-Dimensional king Lattice for N = 8 

Index Exact (ne=256) n =128 n =64 e n =32 e e 

1 1.000 000 000 000 1.000 000 000 000 
17 0.018 321 787 227 0.018 321 787 227 

9 0.018 321 787 227 0.018 321 787 227 
5 0.018 321 787 227 0.018 321 787 227 

33 0.018 321 787 227 0.018 321 787 227 
65 0.018 321 787 227 0.018 321 787 227 

3 0.018 321 787 226 0.018 321 787 226 
2 0.018 321 785 164 0.018 321 785 164 

97 0.000 335 800 502 0.000 335 800 502 
49 0.000 335 800 501 0.000 335 800 501 
25 0.000 335 800 501 0.000 335 800 501 
13 0.000 335 800 500 0.000 335 800 500 

7 0.000 335 800 499 0.000 335 800 499 
4 0.000 335 800 423 0.000 335 800 423 

81 0.000 335 687 928 0.000 335 687 928 
41 0.000 335 687 923 0.000 335 687 928 
21 0.000 335 687 923 0.000 335 687 927 
11 0.000 335 687 923 0.000 335 687 926 
73 0.000 335 687 890 0.000 335 687 890 
37 0.000 335 687 889 0.000 335 687 889 
69 0.000 335 687 889 0.000 335 687 889 
19 0.000 335 687 889 0.000 335 687 889 
35 0.000 335 687 889 0.000 335 687 889 
67 0.000 335 687 889 0.000 335 687 889 

128 0.000 335 687 888 0.000 335 687 888 
6 0.000 335 687 888 0.000 335 687 888 

10 0.000 335 687 850 0.000 335 687 850 
66 0.000 335 687 850 0.000 335 687 850 
18 0.000 335 687 850 0.000 335 687 850 
34 0.000 335 687 850 0.000 335 687 850 

127 0.000 012 298 777 0.000 012 298 778 
113 0.000 006 156 782 0.000 006 156 782 

57 0.000 006 156 744 0.000 006 156 744 
29 0.000 006 156 706 0.000 006 156 706 
15 0.000 006 156 668 0.000 006 156 668 

8 0.000 006 152 628 0.000 006 152 628 
105 0.000 006 152 618 0.000 006 152 618 

89 0.000 006 152 618 0.000 006 152 618 
53 0.000 006 152 580 0.000 006 152 580 
45 0.000 006 152 580 0.000 006 152 580 

1.000 000 000 000 1.000 000 000 000 
0.018 321 781 034 0.018 321 776 904 
0.018 321 783 098 0.018 321 778 967 
0.018 321 785 161 0.018 321 781 030 
0.018 321 778 971 0.018 321 774 841 
0.018 321 776 907 0.018 321 772 777 
0.018 321 787 223 0.018 321 783 093 
0.018 321 785 160 0.018 321 785 157 
0.000 335 800 310 0.000 335 574 974 
0.000 335 800 348 0.000 335 575 012 
0.000 335 800 386 0.000 335 575 050 
0.000 335 800 423 0.000 335 575 087 
0.000 335 800 461 0.000 335 575 125 
0.000 335 800 423 0.000 335 575 163 

0.000 335 575 164 
0.000 335 575 201 
0.000 335 575 239 

0.000 335 687 737 
0.000 335 575 277 

0.000 012 298 768 
0.000 006 154 562 
0.000 006 154 562 
0.000 006 154 562 
0.000 006 154 564 

0.000 335 687 509 

205 

Note. The approximate eigenvector computed with n, elements is shown for rrp = 32, 64, 
and 128 (as well as the exact result n, = 256). Only the largest elements in the exact result 
and the corresponding elements in the approximations are given. The temperature T= 0.5 
and the magnetic field H =O. 

n = 8. The eigenvector dimension is 2’= 256; however, for T= 0.5 the system is 
deep in the ferromagnetic region of the phase diagram, so only a very few spin con- 
figurations are important. This implies that only a few eigenvector elements are 
significant, so we give in Table I only the largest of these. In the first two columns 
are the index and corresponding element of the exact eigenvector; in subsequent 
columns are the corresponding elements of the approximate eigenvector computed 
using the indicated number (n,) of elements. Since (taking H = 0) the vector is sym- 
metric, u(i) = 42” - i + l), only values of i < 128 are presented. It is clear from 
Table I that for such a low temperature only a very few elements of the eigenvector 
are significant. Recall that physical quantities-matrix elements-are in general 
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much less sensitive to variations in parameters than are eigenfunctions; uncertain- 
ties in eigenfunctions are propagated only in higher order in the matrix elements. 
We will briefly discuss this below. For the moment, we would simply note that an 
examination of Table I shows that as n, is increased the exact eigenvector is 
approached in a regular fashion; that the most significant elements are found even 
for a value of n, which is only l/8 the dimension of the eigenvector. 

One does not expect this extremely simple situation to persist as a phase bound- 
ary is approached that leads to a rapid increase in the number of configurations 
that must be considered. For the Ising model, the boundary of the ferromagnetic 
phase is such a place; how does our approximation behave in this case? In Table II 
we present the results of calculation for the same system as in Table I except that 
here we have set the temperature T= 2.0, close to the transition temperature 
T, = 2.269.... Again, in Table II the same quantities are given as in Table I; 
however, as expected, the method is no longer so powerful. It is no longer true that 
only a few eigenvector elements are dominant (whatever precisely one means by 
that word). Nevertheless, it is apparent that the approximate eigenvectors are cap- 

TABLE II 

Same as Given Table I, except the Temperature T=2.0, near the 
Phase Boundary 

Index Exact (ne=256) 

65 
33 
17 

9 
5 
3 
2 

97 
49 
25 
13 

7 
4 

81 
41 
21 
73 
11 
37 
69 

128 
67 
19 
35 

6 
66 
34 
10 
18 

127 
113 

57 

n =128 n -64 e n =32 e e 

1.000 000 1.000 000 
0.451 134 0.433 336 
0.449 530 0.434 114 
0.448 434 0.436 940 
0.447 381 0.439 787 
0.445 944 0.439 765 
0.442 795 0.437 124 
0.431 183 0.427 302 
0.243 794 0.210 867 
0.240 702 0.211 797 
0.238 193 0.217 372 
0.235 370 0.222 939 
0.230 644 0.220 457 
0.217 484 0.209 069 
0.216 332 0.185 267 
0.213 826 0.179 124 
0.211 455 0.195 071 
0.209 351 0.174 658 
0.208 026 0.199 440 
0.206 795 0.179 216 
0.206 632 0.170 685 
0.204 517 0.192 140 
0.204 350 0.174 481 
0.203 627 0.183 984 
0.203 105 0.175 151 
0.199 485 0.193 406 
0.198 191 0.183 894 
0.196 335 0.179 123 
0.196 191 0.188 118 
0.185 765 0.179 721 
0.176 362 0.157 170 
0.161 746 0.127 168 
0.156 205 0.130 447 

1.000 000 1.000 000 
0.383 327 0.367 540 
0.392 138 0.375 006 
0.401 152 0.382 624 
0.410 373 0.392 396 
0.419 806 0.398 326 
0.429 456 0.406 418 
0.420 693 0.414 673 
0.188 939 0.135 210 
0.193 282 0.137 957 
0.197 725 0.140 759 
0.202 270 0.143 619 
0.206 919 0.146 537 
0.200 804 0.149 513 

0.150 968 

0.169 849 0.150 096 

0.154 438 

0.150 968 

0.137 695 
0.101 011 
0.103 333 
0.105 708 29 0.150 972 0.133 873 
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TABLE III 
Spin Configuration Probabilities for the Same 

System as That of Tables I and II 

Configuration Exact (ne=256) n =32 e 

0.499 999 549 0.499 999 549 

5.632 x 10 -8 5.631 x 10 -8 

5.632 x 10 -8 5.632 x 10 -8 

5.631 x 10 -8 5.631 x 10 -8 

5.631 x 10 -8 5.631 x 10 -6 

5.631 x 10 -8 5.631 x 10 -8 

5.631 x 10 -8 5.631 x 10 -8 

5.631 x 1O-8 5.631 x 10 -8 

5.631 x 10 -8 5.631 x 10 -8 

Note. Only the most probable configurations are 
given. The temperature T=0.5 and the magnetic 
field H=O. 

TABLE IV 
Spin Configuration Probabilities for the Same System as That of Tables I 

and II 

Configuration Exact (ne=256) ne=128 n =64 n =32 e e 

0.368 045 0.383 144 0.401 939 

0.011 940 0.011 472 0.010 566 

0.011 940 0.011 552 0.010 566 

0.009 993 0.009 945 0.008 955 

0.009 993 0.009 940 0.008 955 

0.009 985 0.009 877 0.008 955 

0.009 985 0.009 871 0.008 955 

0.009 950 0.009 764 0.008 955 

0.009 950 0.009 813 0.008 955 

0.003 539 0.002 965 0.002 642 

0.003 539 0.002 970 0.002 127 

0.002 826 0.002 435 0.002 127 

0.002 822 0.002 435 0.002 127 

0.002 822 0.002 429 0.002 127 

0.002 801 0.002 347 0.002 127 

0.423 867 

0.008 596 

0.009 582 

0.008 538 

0.008 518 

0.008 557 

0.008 499 

0.008 577 

0.008 479 

0.001 12s 

0.001 132 

0.001 135 

0.001 130 

0.001 138 

+H++--+ 0.002 801 0.002 397 0.002 127 0.001 127 

Note. Only the most probable configurations are given. The temperature 
T= 2.0 and the magnetic field H = 0. 

581/83/l-14 
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turing the essential characteristics of the system even at this elevated temperature. 
Let us be more precise about this and discuss the calculation of physical quantities. 

At low temperatures, when the system is essentially always in a single conligura- 
tion, the method gives precise results with n, quite small. This was seen in Table I 
and is reflected as well in Table III, which gives the probabilities for the most likely 
spin configurations. There we only display results for the exact solution and for the 
crudest (n, = 32) approximation, since even in this latter case the results are essen- 
tially exact. On the other hand, at a higher temperature (T = 2.0), the situation is 
more complex, as seen in Table IV. It is clear that in order to extract physically 
meaningful results, some method of extrapolation is required. Of course, for the 
exact eigenfunctions and eigenvalues, since the very lattice itself, being finite, is 
necessarily an approximation to the problem of interest. Consequently, an 
extrapolation scheme is needed which takes approximate solutions to approximat- 
ing lattice systems to obtain results for the infinite lattice system. This is a separate 
issue and will be taken up at a later time. 

In a low-temperature phase, i.e., far below the critical point, the correlation 
length will be only a few lattice spacings and so will be small compared to the 
system size. One might therefore expect a conventional finite-lattice approximation 
to be adequate and see no need for the scheme developed here. Indeed, one may 
question whether our approach applied to a system of size larger than np is any 
better than the exact (numerical) eigensolution of the transfer matrix for a lattice 
of In, (n,) sites. We turn now to an examination of this question. 

In Table V we present the results of calculation of the free energy per lattice site, 
F,,, for the Ising model at temperature T= $T, z 1.135 and for a variety of lattice 
sizes (n) as well as dimensions of approximating vectors (n,). The exact solution for 
each finite lattice lies on the diagonal n, = 2” and is underlined; the conventional 
approach would be to compute some physical quantity (the free energy, energy, 
magnetization,...) as a function of n for n, = 2” and extrapolate appropriately to 
infinite n. The present scheme is more complex in that extrapolation is done in the 
2-dimensional parameter space (n,, n). The most obvious generalization of the 

TABLE V 

Values of the Partition Function for the Same System as in Preceding Tables, with Temperature T= 4 T, 
and Various Choices for the Lattice width (n) and the Number of Approximating Elements (n,) 
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standard method would be to extrapolate along a line of fixed ratio n,/2”. It 
appears from the table that such an extrapolation procedure might be possible, but 
would not be as smooth for smaller ratios than for a ratio of unity (corresponding 
to exact solution for each strip with n). What is the origin of the irregular behavior? 
We argue here that it arises from the treatment of subdominant spin configurations: 
their neglect or inclusion for various n,. 

The dominant spin configurations for T = $Tc is of cource totally aligned, 
since we are in the ferromagnetic region of the phase diagram. The sub- 
dominant configurations are modifications of this one in which there is one 
kink-antikink pair, two such pairs, etc. For example, with n = 8! the dominant 
configuration is [ + + + + + + + + 1; the next most important configurations are 
[ + + + + + + + - ] and its related partners (see Tables III and IV for tem- 
peratures T= 0.5, 2.0). It is a simple exercise to count the number of such con- 
figurations for any given n; results are presented in Table VI. Now, an examination 
of Table V reveals sudden jumps in the approximate free energy for fixed n around 
certain values of n,. For example, for n = 8 there is a jump when n, is increased 
from 26 to 2’. Refering to Table VI, we see that for n = 8 one requires at least 
n, = 74 to account for two kink-antikink pairs, so we may attribute the improve- 
ment in the calculation of F, to the inclusion of these configurations. A similar 
jump for n = 9, 10 occurs for the same n, values and has the same explanation. This 
argument is confirmed by examining n = 11: the jump now occurs when n, is 
increased from 2’ to 28, and the minimum value of n, needed to account for two 
kink-antikink pairs for n = 11 is 134. Similarly, for n = 20, the jump occurs for n, 
increasing from 28 to 29, while the minimum n, needed for n = 20 is 380. Table VI 
indicates that the number of these configurations grows much more slowly than 
does the total number of configurations. For example, there are about seven times 
more configurations with up to three kink-antikink pairs for n = 20 than for n = 10, 
but over 1000 times more total congigurations. 

The lessons to be learned from this exercise are that the method is useful for 
situations in which only a few spin configurations are important; that the precision 
will worsen in a manner which can be well understood by enumeration of subdomi- 

TABLE VI 

Number of Spin Configurations with at most nk Kink-Antikink Pairs, for Various Choices 
of the Lattice Width n 

2 58 14 92 112 134 158 274 380 
3 128 186 260 352 464 598 1120 2280 
4 256 512 112 1124 1588 3640 9690 
5 1024 2048 3172 8736 31008 
6 4096 16016 77520 
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nant configurations; finally, that the most probable configurations are relatively 
easy to extract even for large n, but the neglect of the contribution of large numbers 
of low-probability configurations will lead to controlled errors in estimation of 
physical quantities. 

The effect of projecting out only certain vector components varies with the physi- 
cal quantity being computed. For example, if spin configuration probabilities are 
being computed, then there is not much loss of precision. However, if the partition 
function (maximal eigenvalue) is desired, then one computes the Rayleigh quotient, 
Ri, of Eq. (4); this requires one further multiplication, and thus one further projec- 
tion. The ratio must be computed by first determining the intersection of the sets 
of indices for the vectors vi, ui, and MU, and then computing the ratio Ri by restric- 
ting the inner products to this common index set. Clearly, this does not make use 
of all the information known of the eigenvectors, but it is a conservative method of 
physical quantities (such as energy per site, correlations) which require additional 
multiplications will lead to yet more deterioration in precision. To illustrate the 
point, consider the application of the method for temperature T= 0.99T,, n = 12, 
and n, = 1024, i.e., only l/4 the dimension of the exact solution eigenvector. We find 
that when convergence occurs there are 1000 matching indices in vectors ui and ui, 
but only 882 matching indices of these vectors and these of MU,; thus only 882 
elements are used in computing Ri, which means 142 elements are computed but 
not used there. The dominant configurations are spins all aligned, one spin flipped, 
two neighboring spins flipped, and three spins in a row flipped. In Table VII we 
give some results which allow comparison of the method with exact diagonaliza- 

TABLE VII 

Comparison of Results for up= 1024 with Those for Exact 
Diogonalization (n, = 4096), for n = 12 and Temperatures near the 

Critical Temperature T, 

T= 0.95T,, n = 12 n, = 1024 n,=4096 

Free energy 0.963 595 0.966 177 
Energy 1.672 1.570 
All spins aligned 0.547 0.486 
1 spin flip 0.247 0.235 
2 spins in row flipped 0.076 0.079 
3 spins in row flipped 0.023 0.03 1 

T=0.99Tc,n=12 n, = 1024 ne = 4096 

Free energy 0.933 318 0.937 874 
Energy 1.617 1.446 
All spins aligned 0.467 0.375 
1 spin flipped 0.255 0.226 
2 spins in row flipped 0.090 0.090 
3 spins in row flipped 0.040 0.049 
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tion, for a particulary poor choice of temperatures T= 0.95T,, 0.99T,. We see that 
even very near T, roughly 1% of all spin configurations make up 80% or so of the 
configuration probabilities. The partition function is determined to better than a 
percent while the energy is only good to lo%, as expected. The spin configuration 
probabilities are qualitatively correct (the most important are identified), while the 
projection of large components of the eigenvectors skews the probabilities towards 
the dominant ones: the purely aligned and one flip configurations are over- 
estimated, the three spins in a row flipped ark underestimated. 
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